Python For Data Analysis - Syllabus

Python is essential for data analysis due to its simplicity, versatility, and powerful libraries like Pandas, NumPy, and Matplotlib. It enables efficient data manipulation, visualization, and statistical modeling. With Python, analysts can automate workflows, handle large datasets, and gain actionable insights, making it a top choice in data-driven fields.

Omegatech.ai

5/8/20241 min read

Python & Data Analysis Curriculum

Intro to Python

  • Introduction to Python

  • Variables

  • Functions

  • Python Operators

Programming Constructs in Python

  • Python Flow Controls

  • Conditional Statements

  • Loops

Python Objects

  • Python Collection Objects

  • String

  • List

  • Tuple

  • Dictionary

List Comprehension + Functions

  • List Comprehension

  • User-defined Functions

  • Function Arguments

  • Built-in Functions

  • Lambda Functions

Numpy

  • Introduction to Numpy

  • Numpy Array

  • Creating Numpy Array

  • Array Attributes

  • Accessing Array

  • Array Slicing

  • Array Reshaping

  • Array Operations

  • Iterating through Arrays

Pandas

  • Introduction to Pandas

  • Series

  • DataFrame

  • DataFrame Operations

  • Accessing Elements

  • Conditional Filtering

  • Aggregation

  • Changing Index

  • Converting to Series

  • Data Frame Manipulation

  • Pandas DataFrame - Introduction

  • DataFrame Creation

  • Reading Data from Various Files

  • Understanding Data

  • Accessing DataFrame Elements using Indexing

  • DataFrame Slicing

  • Selection Conditions

  • DataFrame Operations

  • DataFrame Joins

  • Broadcasting

  • Combining DataFrames

  • Chain Indexing

  • Pivot Tables

  • Checking Duplicates

  • Dropping Rows and Columns

  • Groupby

  • Checking Null Values

  • Missing Values Analysis & Treatment

Visualization - Part 1

  • Visualizations using Matplotlib

  • Line Plot

  • Figure and Subplots

  • Multiple Subplots

  • Histogram

  • Pie Chart

  • Scatter Plot

Visualization - Part 2

  • Visualizations using Seaborn

  • Strip Plot

  • Distribution Plot

  • Box Plot

  • Violin Plot

  • Line Plot

  • Bar Plot

  • Count Plot

  • Heat Map

    EDA

  • Summary Statistics

  • Handling Missing Values

  • Advance Analysis using GroupBy

  • Advanced Data Exploration